Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin.

نویسندگان

  • Alessandra Rossini
  • Caterina Frati
  • Costanza Lagrasta
  • Gallia Graiani
  • Alessandro Scopece
  • Stefano Cavalli
  • Ezio Musso
  • Marco Baccarin
  • Marina Di Segni
  • Francesco Fagnoni
  • Antonia Germani
  • Eugenio Quaini
  • Manuel Mayr
  • Qingbo Xu
  • Andrea Barbuti
  • Dario DiFrancesco
  • Giulio Pompilio
  • Federico Quaini
  • Carlo Gaetano
  • Maurizio C Capogrossi
چکیده

AIMS Bone marrow mesenchymal stromal cell (BMStC) transplantation into the infarcted heart improves left ventricular function and cardiac remodelling. However, it has been suggested that tissue-specific cells may be better for cardiac repair than cells from other sources. The objective of the present work has been the comparison of in vitro and in vivo properties of adult human cardiac stromal cells (CStC) to those of syngeneic BMStC. METHODS AND RESULTS Although CStC and BMStC exhibited a similar immunophenotype, their gene, microRNA, and protein expression profiles were remarkably different. Biologically, CStC, compared with BMStC, were less competent in acquiring the adipogenic and osteogenic phenotype but more efficiently expressed cardiovascular markers. When injected into the heart, in rat a model of chronic myocardial infarction, CStC persisted longer within the tissue, migrated into the scar, and differentiated into adult cardiomyocytes better than BMStC. CONCLUSION Our findings demonstrate that although CStC and BMStC share a common stromal phenotype, CStC present cardiovascular-associated features and may represent an important cell source for more efficient cardiac repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Mesenchymal Stem Cells and Their, Clinical Aapplication

There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

A review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell

Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...

متن کامل

CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells

The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2011